Controlling an actively-quenched single photon detector with bright light.

نویسندگان

  • Sebastien Sauge
  • Lars Lydersen
  • Andrey Anisimov
  • Johannes Skaar
  • Vadim Makarov
چکیده

We control using bright light an actively-quenched avalanche single-photon detector. Actively-quenched detectors are commonly used for quantum key distribution (QKD) in the visible and near-infrared range. This study shows that these detectors are controllable by the same attack used to hack passively-quenched and gated detectors. This demonstrates the generality of our attack and its possible applicability to eavsdropping the full secret key of all QKD systems using avalanche photodiodes (APDs). Moreover, the commercial detector model we tested (PerkinElmer SPCM-AQR) exhibits two new blinding mechanisms in addition to the previously observed thermal blinding of the APD, namely: malfunctioning of the bias voltage control circuit, and overload of the DC/DC converter biasing the APD. These two new technical loopholes found just in one detector model suggest that this problem must be solved in general, by incorporating generally imperfect detectors into the security proof for QKD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling a superconducting nanowire single- photon detector using tailored bright illumination

We experimentally demonstrate that a superconducting nanowire single-photon detector is deterministically controllable by bright illumination. We found that bright light can temporarily make a large fraction of the nanowire length normally conductive, can extend deadtime after a normal photon detection, and can cause a hotspot formation during the deadtime with a highly nonlinear sensitivity. A...

متن کامل

Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit

: Optical separate spatial dark and bright soliton pairs in steady-state case in one dimension, for a series circuit consisting of two-photon photorefractive (PR) crystal are investigated. Each crystal can be supported the spatial soliton, and at least one must be photovoltaic. The two solitons are known collectively as separate spatial soliton pairs with dark–dark, bright–dark and bright–brigh...

متن کامل

Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array.

We present parallel single molecule detection (SMD) and fluorescence correlation spectroscopy (FCS) experiments with a fully integrated complementary metal oxide semiconductor (CMOS) single-photon 2x2 detector array. Multifocal excitation is achieved with a diffractive optical element (DOE). Special emphasis is placed on parallelization of the total system. The performance of the novel single-p...

متن کامل

A universal setup for active control of a single-photon detector.

The influence of bright light on a single-photon detector has been described in a number of recent publications. The impact on quantum key distribution (QKD) is important, and several hacking experiments have been tailored to fully control single-photon detectors. Special attention has been given to avoid introducing further errors into a QKD system. We describe the design and technical details...

متن کامل

Scintillation induced response in passively-quenched Si-based single photon counting avalanche diode arrays.

An optical electrical model which studies the response of Si-based single photon counting arrays, specifically silicon photomultipliers (SiPMs), to scintillation light has been developed and validated with analytically derived and experimental data. The scintillator-photodetector response in terms of relative pulse height, 10%-90% rise/decay times to light stimuli of different rise times (rangi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 23  شماره 

صفحات  -

تاریخ انتشار 2011